(相关资料图)
1、 确界原理( supremum and infimum principle )是刻画实数完备性的命题之一。
2、 设S为非空数集。若S有上界,则S必有上确界;若S有下界,则S必有下确界。
(相关资料图)
1、 确界原理( supremum and infimum principle )是刻画实数完备性的命题之一。
2、 设S为非空数集。若S有上界,则S必有上确界;若S有下界,则S必有下确界。
										2023-05-21
										2023-05-21
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-20
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-19
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-18
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17
										2023-05-17